|
|
www.design-reuse-china.com |
Developing and verifying 5G designs: A unique challenge
In general, the largest system-on-chip (SoC) designs in industries such as automotive, artificial intelligence/machine learning (AI/ML), and graphics/computing/storage share complexity and size, measured in billions of transistors. They also reveal a multitude of common functional blocks duplicated several times, including central processing units (CPUs), graphic processing units (GPUs), digital signal processing units (DSPs), arithmetic logic units (ALUs), memory blocks, and standard protocol interfaces. Specific functionality required by end-use applications is mostly implemented in software and sometimes via limited specialized hardware.
www.edn.com/, May. 09, 2023 –
That is not the case for 5G infrastructure designs and soon 6G designs. While 5G SoCs include common processing units such as CPUs, DSPs and AI/ALUs, most of the fabric is made of sizeable, complex algorithmic blocks implementing a robust set of unique and not repeatable communication functions. They also combine digital blocks with unusually large analog blocks. Furthermore, they employ software to customize their deployment with service providers globally to comply with different standards.
5G wireless communications challenges
The 5G standard became necessary to support ubiquitous, worldwide wireless communications beyond user-to-user communication that drove all preceding standards: 2G, 3G, 4G and a few intermediate versions. The need was dictated as a way to serve the broadest range of user-to-machine and machine-to-machine types of wireless communications including Internet of things (IoT) devices, autonomous vehicles/drones, industrial, medical, military robots, cloud-based AI/ML services, edge applications, and more.
Expectedly, the dramatic expansion in applications produced an explosion of data traffic, particularly in urban areas. Figure 1 compares the growth in Exabytes from 2010 to 2030.