|
|
www.design-reuse-china.com |
人工智能前沿 2025年影响工程的顶级趋势
finance.sina.com.cn, Dec. 26, 2024 –
人工智能在重塑工程范式方面发挥着关键作用,它提供的工具和方法可提高各个领域的精度、效率和适应性。想要在人工智能竞赛中保持领先的工程领导者应该关注四个关键领域的进步:生成式人工智能、验证和确认、降阶模型(ROM)和控制系统设计。
趋势一:GenAI转向框图、3D模型和流程图
虽然最初对基于文本的 GenAI 的关注继续影响以软件为中心的工作流程,但它对具有更高级别抽象的工程工具的影响却显滞后。到 2025 年,我们预计GenAI在"无代码"工程工具(如框图、3D 模型和流程图)中的应用将继续取得进展。这些工具使工程师能够以图形方式表示复杂的系统,毫不费力地编辑组件,并管理固有的复杂性。此外,它们对于工程师的工作效率至关重要,并验证了工程师对系统级性能的信心。将 GenAI 与这些工具相结合将进一步提高他们的生产力,同时保持最终用户熟悉的界面。该领域的更多工具将集成AI助手,使其能够理解工程模型并协助其设计和管理。
趋势二:工程师利用验证和确认实现AI合规性
随着人工智能与汽车、医疗保健和航空航天应用中安全关键型系统的融合加速,行业管理机构正在推出人工智能合规的要求、框架和指导。作为回应,工程师必须现在就优先考虑验证和确认(V&V)过程,以确保其 AI 组件已准备好在任何条件下部署,并满足潜在的可靠性、透明度和偏差合规标准。
V&V 对于验证深度学习模型的稳健性和检测分布外(out-of-distribution,OOD)场景至关重要,特别是在安全关键型应用中。稳健性验证至关重要,因为神经网络可能会对带有微小的、难以察觉的变化(称为对抗性示例)的输入进行错误分类。例如,胸部 X 光图像中的一个细微扰动可能会导致模型错误地将肺炎识别为正常。工程师可以提供模型一致性的数学证明,并使用形式化验证方法(例如抽象解释)测试这些场景。此过程通过识别和解决漏洞来增强模型的可靠性并确保符合安全标准。
分布外检测同样重要,因为它使人工智能系统能够识别并适当地处理不熟悉的输入。这种能力对于保持准确性和安全性至关重要,尤其是当意外数据导致错误预测时。辨别分布内和分布外数据的能力确保人工智能模型可以将不确定的情况交给人类专家,从而防止关键应用程序中出现潜在故障。
专注于 V&V 允许工程师遵守 AI 框架和标准,同时推动其行业内的产品开发。主动的合规方法可确保人工智能系统可靠、安全且符合道德规范,从而在快速发展的环境中保持竞争优势。